

¹ of 2

BPHYS102

		OR			
Q.6	a.	A Linear operator 'X' operates such that $X 0\rangle = 1\rangle$ and $X 1\rangle = 0\rangle$. Find the matrix representation of 'X'.	5	L2	CO2
	b.	Describe the working of CNOT gate mentioning its matrix representation and truth table.	9	L2	CO2
	c.	Explain the representation of qubit using Bloch sphere.	6	L.2	CO2
	.l	Module – 4			1
Q.7	a.	Enumerate the failures of classical free electron theory and discuss the success of quantum free electron theory of metals.	8	L2	CO3
	b.	Explain DC and AC Josephson effects and mention any two applications of superconductivity in quantum computing.	7	L2	CO3
	c.	Find the temperature at which there is 1% probability that a state with an energy 0.5 eV above the Fermi energy is occupied.	5	L3	CO3
	1	OR		1	1
Q.8	a.	Explain Meissner's effect and the variation of critical field with temperature.	8	L2	CO3
	b.	Define Fermi factor. Discuss the variation of Fermi factor with temperature and energy.	7	L2	CO3
	c.	The critical temperature of Nb is 9.15 K. At zero Kelvin, the critical field is 0.196T. Calculate the critical field at 8 K.	5	L3	C03
	L.,	Module – 5	eta nel a	1	
Q.9	a.	Discuss timing in Linear motion, Uniform motion, Slow in and Slow out.	8	L2	CO4
	b.	Describe Jumping and parts of jumping in animation.	7	L2	CO4
2	c.	A slowing-in object in an animation has a first frame distance 0.5 m and first slow in frame 0.35 m. Calculate the base distance and the number of frames in sequence.	5	L3	CO5
	L	OR		•	
Q.10	a.	Illustrate the odd rule and odd rule multiplier with suitable example.	8	L.2	CO4
	b.	Discuss modeling the probability for proton decay.	7	L2	CO4
	с.	In an optical fibre experiment the Laser light propagating through optical fibre cable of 1.5 m, made a spot diameter of 8 mm on the screen. The distance between the end of the optical fibre cable and the screen is 3.4 cm. Calculate the angle of contact and numerical aperture of given optical fibre.	5	L3	C05